Functions

R Horan \& M Lavelle

The aim of this document is to provide a short, self assessment programme for students who wish to acquire a basic understanding of the concept of functions.

Copyright © 2003 rhoran@plymouth.ac.uk, mlavelle@plymouth.ac.uk
Last Revision Date: December 3, 2003

Table of Contents

1. Functions (Introduction)
2. Flow Diagrams
3. Composite Functions
4. Inverse Functions
5. Quiz on Functions

Solutions to Exercises
Solutions to Quizzes

1. Functions (Introduction)

The concept of a function is essential in mathematics. There are two common notations in use:

$$
\begin{aligned}
& \text { (a) } f(x)=x^{2}+2, \\
& \text { (b) } f: x \mapsto x^{2}+2 .
\end{aligned}
$$

Part (a) is commonly used. Part (b) is interpreted as
the function f maps x to $x^{2}+2$.

Example 1 If two functions are given as $f(x)=2 x+3$, and $g(x)=3-x^{2}$, then

$$
\begin{array}{ll}
\text { (a) } & f(2)=2 \times 2+3=7 \\
\text { (b) } & f(-3)=2 \times(-3)+3=-6+3=-3 \\
\text { (c) } g(0)=3-(0)^{2}=3 \\
\text { (d) } g(4)=3-(4)^{2}=3-16=-13
\end{array}
$$

Example 2 Find the numbers which map to zero under the function

$$
h: x \mapsto x^{2}-9 .
$$

Solution The function can also be written as $h(x)=x^{2}-9$ and if x maps to zero then $h(x)=0$, i.e.

$$
\begin{aligned}
x^{2}-9 & =0 \\
x^{2} & =9
\end{aligned}
$$

since squaring both 3 and -3 gives the value 9 .
Exercise 1. Two functions are given as $h: x \mapsto x^{2}-4$ and $g: x \mapsto 10 x+5$. Find the following: (Click on the green letters for solution.)
(a) $h(1)$
(b) $h(-2)$
(c) $h(0)$
(d) $g(3)$
(f) the values of x such that $h(x)=12$

2. Flow Diagrams

The function $f(x)=2 x+3$ in example 1 may be represented as a flow diagram.

$$
\xrightarrow{x} \text { multiply by } 2 \xrightarrow{2 x} \text { add } 3 \xrightarrow{2 x+3}
$$

From the diagram it is clear that the order of the operations cannot be confused. First multiply by 2 and then add 3 .

Example 3 Draw a flow diagram for the two functions given by

$$
\text { (a) } k: x \mapsto(3 x-2)^{2}, \quad \text { (b) } g(x)=\frac{4 x-2}{3} \text {. }
$$

Solution
$(\mathrm{a}) \xrightarrow{x}$ multiply by $3 \xrightarrow{3 x}$ subtract $2 \xrightarrow{3 x-2}$ square $\xrightarrow{(3 x-2)^{2}}$
(b) \xrightarrow{x} multiply by $4 \xrightarrow{4 x}$ subtract $2 \xrightarrow{4 x-2}$ divide by $3 \xrightarrow{\frac{4 x-2}{3}}$

Exercise 2. Draw flow diagrams for each of the following functions. (Click on the green letters for solution.)
(a) $h: x \mapsto 6 x+1$
(b) $h: x \mapsto 4(3-2 x)$
(c) $h: x \mapsto(2 x-5)^{2}$
(d) $g: x \mapsto 3 x^{2}-4$
(e) $g: x \mapsto \frac{2 x^{2}}{3}+5$
(f) $g: x \mapsto \sqrt{x^{2}+2}$

Now try this short quiz.
Quiz From the functions listed below choose the one which is given by the following flow diagram.

(a) $\left(\frac{x^{3}}{4}-1\right)^{2}+4$
(b) $\left(\frac{x^{3}}{4}-(1)^{2}\right)+4$
(c) $\left(\frac{x^{3}}{4-1}\right)^{2}+4$
(d) $\left(\left(\frac{x}{4}\right)^{3}+(1)^{2}\right)+4$

3. Composite Functions

The function $f(x)=2 x+3$, from example 1 , is composed of two simpler functions, i.e. multiply by 2 and add 3. If these two functions are written as $h: x \mapsto 2 x$ and $g: x \mapsto x+3$ then the composition of these two functions is written $g h$ (sometimes as $g \circ h$ or $g(h(x))$).
Example 4 If $h: x \mapsto 2 x^{2}$ and $g: x \mapsto \sqrt{x+5}$, find the composite function $g h$.
Solution Applying first h and then g results in the composite function

$$
g h=\sqrt{2 x^{2}+5} .
$$

This can best be seen by using flow diagrams.

N.B. The composition of two functions, $f g$, is NOT the same as the product of two functions.

Exercise 3. For each of the following functions, f, g, write down the function $f g$. (Click on the green letters for solution.)
(a) $f:(x)=2 x+1, g(x)=x-3$
(b) $f: x \mapsto 2 x-1, g: x \mapsto x^{2}$
(c) $f(x)=x^{2}, g(x)=2 x-1$
(d) $f: x \mapsto x+3, g: x \mapsto x-3$
(e) $f(x)=\frac{x}{3}-2, g(x)=3 x^{2}$
(f) $f: x \mapsto 3 x^{2}, g: x \mapsto \frac{x}{3}-2$

The functions in part (b) above are reversed in part (c). The results show that, in general, reversing the order of two functions changes the composite function. In simpler terms if h and k are two functions then, in general, $h k \neq k h$.
Quiz Two functions are given as

$$
f: x \mapsto 2 x^{2}-1 \text { and } g: x \mapsto x-3 .
$$

Which of the following is a solution to $f(g(x))=7$?
(a) $x=5$
(b) $x=-5$
(c) $x=2$
(d) $x=-2$

4. Inverse Functions

If a function f maps m to n then the inverse function, written as f^{-1}, maps n to m.
Example 5 Find the inverse of the function $h: x \mapsto \frac{4 x-3}{2}$. Solution First draw a flow diagram for the function.

$$
\xrightarrow{x} \text { multiply by } 4 \xrightarrow{4 x} \text { subtract } 3 \xrightarrow{4 x-3} \text { divide by } 2 \xrightarrow{\frac{4 x-3}{2}}
$$

Now draw a flow diagram, starting from the right, with each operation replaced by its inverse.

$$
\frac{\frac{2 x+3}{4}}{\leftarrow} \text { divide by } 4_{2 x+3}^{\leftarrow} \text { add } 3 \quad \frac{2 x}{\leftarrow} \begin{array}{|c}
\text { multiply by } 2 \\
\longleftarrow
\end{array}
$$

The inverse of $h: x \mapsto \frac{4 x-3}{2}$ is thus $h^{-1}: x \mapsto \frac{2 x+3}{4}$.

If a function f has an inverse f^{-1} then the composite function $f f^{-1}$ is the identity function which was mentioned in exercise $3(\mathrm{~d})$, i.e. $f f^{-1}: x \mapsto x$. It is also true that $f^{-1} f: x \mapsto x$.

Example 6 For the function h in example 5, show that the composite function $h h^{-1}$ is the identity function.
Solution First note that $h^{-1}: x \mapsto \frac{2 x+3}{4}$. For the composition $h h^{-1}(x)$, therefore, this must be operated on by the function h, i.e. in the first flow diagram of example 5 the input on the right hand side must be $\frac{2 x+3}{4}$.

$$
\xrightarrow{h^{-1}(x)} \stackrel{\frac{2 x+3}{4}}{\underbrace{\text { multiply by } 4}_{h(x)=\frac{4 x-3}{2}} \stackrel{2 x+3}{\text { subtract } 3} \xrightarrow{2 x} \text { divide by } 2} \xrightarrow{x}
$$

A similar exercise will show that $h^{-1} h$ is also the identity function.

Exercise 4. Find the inverse of each of the following functions in the form $x \mapsto \ldots$ (Click on the green letters for solution.)
(a) $f(x)=3 x+4$
(b) $f: x \mapsto 4(x-1)$
(c) $f(x)=3(2 x+5)$
(d) $g: x \mapsto-8 x+3$
(e) $g(x)=\frac{1}{2}(3 x+4)+6$
(f) $g: x \mapsto \frac{2 x+1}{3}$

Quiz Two functions are given as

$$
f: x \mapsto \frac{1}{2} x \text { and } g: x \mapsto 3 x+16 .
$$

If $h=f g$, which of the following is h^{-1} ?
(a) $h^{-1}: x \mapsto \frac{1}{3}(2 x+16)$
(b) $h^{-1}: x \mapsto 3(2 x+16)$
(c) $h^{-1}: x \mapsto \frac{1}{3}(2 x-16)$
(d) $h^{-1}: x \mapsto 2\left(\frac{x}{3}-16\right)$

5. Quiz on Functions

Begin Quiz If three functions are given as $f: x \mapsto x^{2}, g: x \mapsto$ $4 x, h: x \mapsto x+5$, choose the correct options for the following.
1.

$$
\begin{gathered}
f g: x \mapsto \ldots \\
\text { (b) } 4 x^{2},
\end{gathered}
$$

(a) $8 x^{2}$,
(c) $16 x$,
(d) $16 x^{2}$.
2.

$$
g f: x \mapsto \ldots
$$

(a) $8 x^{2}$,
(b) $4 x^{2}$,
(c) $16 x$,
(d) $16 x^{2}$.
3.

$$
g h: x \mapsto \ldots
$$

(a) $5+4 x$,
(b) $4+5 x$,
(c) $4 x+5$,
(d) $4(x+5)$.
4.

$$
(h g)^{-1}: x \mapsto \ldots
$$

(a) $\frac{1}{4}(x-5)$,
(b) $\frac{1}{4}(x+5)$,
(c) $\frac{1}{5}(x+4)$,
(d) $\frac{1}{5}(x-4)$.

End Quiz Score: \quad Correct

Solutions to Exercises

Exercise 1(a) The function is $h(x)=x^{2}-4$ so

$$
\begin{aligned}
h(1) & =(1)^{2}-4 \\
& =1-4 \\
& =-3
\end{aligned}
$$

Click on the green square to return

Solutions to Exercises

Exercise 1(b) The function is $h(x)=x^{2}-4$ so

$$
\begin{aligned}
h(-2) & =(-2)^{2}-4 \\
& =4-4 \\
& =0
\end{aligned}
$$

Click on the green square to return

Solutions to Exercises

Exercise 1(c) The function is $h(x)=x^{2}-4$ so

$$
\begin{aligned}
h(0) & =(0)^{2}-4 \\
& =0-4 \\
& =-4
\end{aligned}
$$

Click on the green square to return

Solutions to Exercises

Exercise 1(d) The function is $g(x)=10 x+5$ so

$$
\begin{aligned}
g(3) & =10 \times(3)+5 \\
& =30+5 \\
& =35
\end{aligned}
$$

Click on the green square to return

Solutions to Exercises

Exercise 1(e) The function is $g(x)=10 x+5$ so

$$
\begin{aligned}
g(-1) & =10 \times(-1)+5 \\
& =-10+5 \\
& =-5
\end{aligned}
$$

Click on the green square to return

Exercise 1(f) If $h(x)=12$ then since $h(x)=x^{2}-4$,

$$
\begin{aligned}
x^{2}-4 & =12 \\
x^{2} & =4+12 \\
& =16 \\
x & = \pm 4
\end{aligned}
$$

since the square of both 4 and -4 is 16 .
Click on the green square to return

Solutions to Exercises

Exercise 2(a)
For $h: x \mapsto 6 x+1$ the flow diagram is

$$
\xrightarrow{x} \text { multiply by } 6 \xrightarrow{6 x} \text { add } 1 \xrightarrow{6 x+1}
$$

Click on the green square to return

Solutions to Exercises

Exercise 2(b)
For $h: x \mapsto 4(3-2 x)$ the flow diagram is

$$
\xrightarrow{x} \text { multiply by }-2 \xrightarrow{-2 x} \text { add } 3 \xrightarrow{3-2 x} \text { multiply by } 4 \xrightarrow{4(3-2 x)}
$$

Click on the green square to return

Solutions to Exercises

Exercise 2(c)
For $h: x \mapsto(2 x-5)^{2}$ the flow diagram is

$$
\xrightarrow{\text { multiply by } 2} \xrightarrow{2 x} \text { subtract } 5^{2 x-5} \text { square } \xrightarrow{(2 x-5)^{2}}
$$

Click on the green square to return

Solutions to Exercises

Exercise 2(d)
For $g: x \mapsto 3 x^{2}-4$ the flow diagram is

$$
\xrightarrow{x} \text { square } \xrightarrow{x^{2}} \text { multiply by } 3 \xrightarrow{3 x^{2}} \text { subtract } 4 \xrightarrow{3 x^{2}-4}
$$

Click on the green square to return

Solutions to Exercises

Exercise 2(e)
For $g: x \mapsto \frac{2 x^{2}}{3}+5$ the flow diagram is
\xrightarrow{x} square $\xrightarrow{x^{2}}$ multiply by $2 \xrightarrow{2 x^{2}}$ divide by $3 \xrightarrow{\frac{2 x^{2}}{3}}$ add $5 \xrightarrow{\frac{2 x^{2}}{3}+5}$
Click on the green square to return

Solutions to Exercises

Exercise 2(f)
For $g: x \mapsto \sqrt{x^{2}+2}$ the flow diagram is

$$
\xrightarrow{x} \text { square } \xrightarrow{x^{2}} \text { add } 2 \xrightarrow{x^{2}+2} \text { take square root } \xrightarrow{\sqrt{x^{2}+2}}
$$

Click on the green square to return

Exercise 3(a)

For the functions $f:(x)=2 x+1, g(x)=x-3$ the function $f g$ is

$$
f g: x \mapsto 2(x-3)+1=2 x-6+1=2 x-5 .
$$

The flow diagram is

The function $f g$ can also be determined as follows. The two functions can be written as $f(z)=2 z+1$ and $g(x)=x-3$. Then by substituting $z=g(x)$ into $f(z)=2 z+1$,

$$
\begin{aligned}
f g(x) & =f(g(x)) \\
& =2 g(x)+1 \\
& =2(x-3)+1 \\
& =2 x-5 .
\end{aligned}
$$

Click on the green square to return

Exercise 3(b)

For the functions $f: x \mapsto 2 x-1, g: x \mapsto x^{2}$ the function $f g$ is

$$
f g: x \mapsto 2 x^{2}-1
$$

The flow diagram is

$$
\xrightarrow{x} \underbrace{\text { square }}_{g} \xrightarrow{x^{2}} \underbrace{\text { multiply by } 2}_{f} \stackrel{2 x^{2}}{\text { subtract } 1} \stackrel{2 x^{2}-1}{\longrightarrow}
$$

The composition may also be determined by writing $f(z)=2 z-1$ and $g(x)=x^{2}$ and substituting $z=g(x)$, obtaining

$$
\begin{aligned}
f g(x) & =f(g(x)) \\
& =2 g(x)+1 \\
& =2\left(x^{2}\right)-1 \\
& =2 x^{2}-1
\end{aligned}
$$

Click on the green square to return

Solutions to Exercises

Exercise 3(c)

For the functions $f: x \mapsto x^{2}, g: x \mapsto 2 x-1$ the function $f g$ is

$$
f g: x \mapsto(2 x-1)^{2} .
$$

The flow diagram is

Alternatively, writing $f(z)=z^{2}$ and $g(x)=2 x-1$, then substituting for $z=g(x)$:

$$
\begin{aligned}
f g(x) & =f(g(x)) \\
& =(g(x))^{2} \\
& =(2 x-1)^{2} .
\end{aligned}
$$

Click on the green square to return

Solutions to Exercises

Exercise 3(d)

For the functions $f: x \mapsto x+3, g: x \mapsto x-3$ the function $f g$ is

$$
f g: x \mapsto x
$$

The flow diagram is

$$
\xrightarrow{x} \underbrace{\text { subtract } 3}_{g} \stackrel{x-3}{\underbrace{\text { add } 3}_{f}} \stackrel{(x-3)+3}{\longrightarrow}
$$

The function which maps x to x is called the identity function. The identity function does not change the value of x.

Click on the green square to return

Exercise 3(e)

For the functions $f: x \mapsto \frac{x}{3}-2, g: x \mapsto 3 x^{2}$ the function $f g$ is

$$
f g: x \mapsto x^{2}-2
$$

The flow diagram is
$\xrightarrow{\text { square }} \xrightarrow{x^{2}} \underbrace{\text { multiply by } 3}_{g} \xrightarrow{3 x^{2}} \underbrace{\text { divide by } 3}_{f} \xrightarrow{x^{2}}$ subtract 2 五 $\xrightarrow{x^{2}-2}$
Writing $f(x)=\frac{z}{3}-2$ and $g(x)=3 x^{2}$ and substituting $z=g(x)$,

$$
\begin{aligned}
f g(x)=f(g(x)) & =\frac{g(x)}{3}-2 \\
& =\frac{3 x^{2}}{3}-2 \\
& =x^{2}-2
\end{aligned}
$$

Click on the green square to return

Exercise 3(f)

For the functions $f: x \mapsto 3 x^{2}, g: x \mapsto \frac{x}{3}-2$ the function $f g$ is

$$
f g: x \mapsto 3\left(\frac{x}{3}-2\right)^{2}
$$

The flow diagram is

Alternatively, the functions are $f(z)=3 z^{2}$ and $g(x)=\frac{x}{3}-2$. Thus

$$
\begin{aligned}
f g(x) & =f(g(x)) \\
& =3(g(x))^{2} \\
& =3\left(\frac{x}{3}-2\right)^{2} .
\end{aligned}
$$

Click on the green square to return

Solutions to Exercises

Exercise 4(a)
For the function $f: x \mapsto 3 x+4$ the flow diagram is

$$
\xrightarrow{x} \text { multiply by } 3 \xrightarrow{3 x} \text { add } 4 \xrightarrow{3 x+4}
$$

The inverse is thus

$$
\frac{\frac{x-4}{3}}{\leftrightarrows} \text { divide by } 3 \stackrel{x-4}{\leftarrow} \text { subtract } 4 \stackrel{x}{\longleftarrow}
$$

so

$$
f^{-1}: x \mapsto \frac{x-4}{3} .
$$

Click on the green square to return

Solutions to Exercises
Exercise 4(b)
For the function $f: x \mapsto 4(x-1)$ the flow diagram is

$$
\xrightarrow{\text { subtract } 1} \xrightarrow{x-1} \text { multiply by } 4 \xrightarrow{4(x-1)}
$$

The inverse is thus

$$
\stackrel{\frac{x}{4}+1}{\leftarrow} \text { add } 1 \stackrel{\frac{x}{4}}{4} \text { divide by } 4 \stackrel{x}{\longleftarrow}
$$

Thus

$$
f^{-1}: x \mapsto \frac{x}{4}+1
$$

Click on the green square to return

Solutions to Exercises

Exercise 4(c)
For the function $f: x \mapsto 3(2 x+5)$ the flow diagram is

$$
\xrightarrow{x} \text { multiply by } 2^{2 x} \text { add } 5^{2 x+5} \text { multiply by } 3 \xrightarrow{3(2 x+5)}
$$

The inverse has the flow diagram

$$
\stackrel{\frac{1}{2}\left(\frac{x}{3}-5\right)}{{ }^{\text {divide by } 2} \stackrel{\frac{x}{3}-5}{\leftrightarrows} \text { subtract } 5} \stackrel{\frac{x}{3}}{\leftrightarrows} \text { divide by } 3 \stackrel{x}{\longleftarrow}
$$

Thus

$$
f^{-1}: x \mapsto \frac{1}{2}\left(\frac{x}{3}-5\right)
$$

Click on the green square to return

Solutions to Exercises

Exercise 4(d)

For the functions $g: x \mapsto-8 x+3$ the flow diagram is

$$
\xrightarrow{x} \text { multiply by }-8 \xrightarrow{-8 x} \text { add } 3^{-8 x+3}
$$

The inverse function has flow diagram

$$
\xrightarrow{-\frac{1}{8}(x-3)} \text { divide by }-8 \xrightarrow{x-3} \text { subtract } 3 \xrightarrow{x}
$$

so the inverse function is

$$
g^{-1}: x \mapsto-\frac{1}{8}(x-3) .
$$

Click on the green square to return

Exercise 4(e)

Before beginning this question the function may be simplified by noting that

$$
\frac{1}{2}(3 x+4)+6=\frac{1}{2}(3 x+4)+\frac{12}{2}=\frac{1}{2}(3 x+16)
$$

so that the function is $g: x \mapsto \frac{1}{2}(3 x+16)$. The flow diagram for this function is

$$
\xrightarrow{x} \text { multiply by } 3 \xrightarrow{3 x} \text { add } 16 \xrightarrow{3 x+16} \text { divide by } 2 \xrightarrow{\frac{1}{2}(3 x+16)}
$$

The inverse flow diagram is

$$
\stackrel{\frac{1}{3}(2 x-16)}{\longleftarrow} \text { divide by } 3_{2 x-16}^{\text {subtract } 16_{2 x}^{\longleftrightarrow} \text { multiply by } 2 \stackrel{x}{\longleftarrow}}
$$

and

$$
g^{-1}: x \mapsto \frac{1}{3}(2 x-16) .
$$

Click on the green square to return

Solutions to Exercises

Exercise 4(f)
For the functions $g: x \mapsto \frac{2 x+1}{3}$ the flow diagram is

$$
\xrightarrow{x} \text { multiply by } 2 \xrightarrow{2 x} \text { add } 1 \xrightarrow{2 x+1} \text { divide by } 3 \xrightarrow{\frac{1}{3}(2 x+1)}
$$

and the inverse is given by

$$
\stackrel{\frac{1}{2}(3 x-1)}{\longleftarrow} \text { divide by } 2 \stackrel{3 x-1}{\leftarrow} \text { subtract } 1 \stackrel{3 x}{\leftarrow} \text { multiply by } 3_{\leftrightarrows}^{\leftarrow}
$$

so that

$$
g^{-1}: x \mapsto \frac{1}{2}(3 x-1) .
$$

Click on the green square to return

Solutions to Quizzes

Solution to Quiz:
The flow diagram
\xrightarrow{x} cube \longrightarrow divide by $4 \longrightarrow$ subtract $1 \longrightarrow$ square \longrightarrow add $4 \longrightarrow$
is completed as

$$
\begin{aligned}
\xrightarrow{x} & \text { cube } \xrightarrow{x^{3}} \text { divide by } 4 \\
\xrightarrow{\frac{x^{3}}{4}} \text { subtract } 1 & \xrightarrow{\frac{x^{3}}{4}-1} \\
& \xrightarrow{\frac{x^{3}}{4}-1} \text { square } \xrightarrow{\left(\frac{x^{3}}{4}-1\right)^{2}} \text { add } 4
\end{aligned}
$$

which is the function $k: x \mapsto\left(\frac{x^{3}}{4}-1\right)^{2}+4$.
End Quiz

Solution to Quiz:

For the functions $f: x \mapsto 2 x^{2}-1$ and $g: x \mapsto x-3$, the composite function is $f g(x)=2(x-3)^{2}-1$.

$$
\begin{aligned}
2(x-3)^{2}-1 & =7 \\
2(x-3)^{2} & =1+7=8 \\
(x-3)^{2} & =4 \\
x-3 & = \pm 2 \\
x & =3 \pm 2
\end{aligned}
$$

so that $x=5$ and $x=1$ are both solutions.

Solution to Quiz:

The function $h=f g$ is $h: x \mapsto \frac{1}{2}(3 x+16)$. This is the function obtained by simplifying the function of exercise $4(\mathrm{e})$. The inverse of the function is thus

$$
h^{-1}: x \mapsto \frac{1}{3}(2 x-16),
$$

as shown in that exercise.

